Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 394
Filtrar
1.
Nat Commun ; 15(1): 3326, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637532

RESUMO

Cdk8 in Drosophila is the orthologue of vertebrate CDK8 and CDK19. These proteins have been shown to modulate transcriptional control by RNA polymerase II. We found that neuronal loss of Cdk8 severely reduces fly lifespan and causes bang sensitivity. Remarkably, these defects can be rescued by expression of human CDK19, found in the cytoplasm of neurons, suggesting a non-nuclear function of CDK19/Cdk8. Here we show that Cdk8 plays a critical role in the cytoplasm, with its loss causing elongated mitochondria in both muscles and neurons. We find that endogenous GFP-tagged Cdk8 can be found in both the cytoplasm and nucleus. We show that Cdk8 promotes the phosphorylation of Drp1 at S616, a protein required for mitochondrial fission. Interestingly, Pink1, a mitochondrial kinase implicated in Parkinson's disease, also phosphorylates Drp1 at the same residue. Indeed, overexpression of Cdk8 significantly suppresses the phenotypes observed in flies with low levels of Pink1, including elevated levels of ROS, mitochondrial dysmorphology, and behavioral defects. In summary, we propose that Pink1 and Cdk8 perform similar functions to promote Drp1-mediated fission.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Humanos , Fosforilação , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dinâmica Mitocondrial/genética , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo
2.
Biol Pharm Bull ; 47(3): 669-679, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38508765

RESUMO

Osteoporosis is caused by imbalance between osteogenesis and bone resorption, thus, osteogenic drugs and resorption inhibitors are used for treatment of osteoporosis. The present study examined the effects of (R)-4-(1-hydroxyethyl)-3-{4-[2-(tetrahydropyran-4-yloxy)ethoxy]phenoxy}benzamide (KY-273), a diphenyl ether derivative, on CDK8/19 activity, osteoblast differentiation and femoral bone using micro-computed tomography in female rats. KY-273 potently inhibited CDK8/19 activity, promoted osteoblast differentiation with an increase in alkaline phosphatase (ALP) activity, and gene expression of type I collagen, ALP and BMP-4 in mesenchymal stem cells (ST2 cells). In female rat femur, ovariectomy decreased metaphyseal trabecular bone volume (Tb.BV), mineral content (Tb.BMC), yet had no effect on metaphyseal and diaphyseal cortical bone volume (Ct.BV), mineral content (Ct.BMC) and strength parameters (BSPs). In ovaries-intact and ovariectomized rats, oral administration of KY-273 (10 mg/kg/d) for 6 weeks increased metaphyseal and diaphyseal Ct.BV, Ct.BMC, and BSPs without affecting medullary volume (Med.V), but did not affect Tb.BV and Tb.BMC. In ovariectomized rats, alendronate (3 mg/kg/d) caused marked restoration of Tb.BV, Tb.BMC and structural parameters after ovariectomy, and increased metaphyseal but not diaphyseal Ct.BV, Ct.BMC, and BSPs. In ovaries-intact and ovariectomized rats, by the last week, KY-273 increased bone formation rate/bone surface at the periosteal but not the endocortical side. These findings indicate that KY-273 causes osteogenesis in cortical bone at the periosteal side without reducing Med.V. In conclusion, KY-273 has cortical-bone-selective osteogenic effects by osteoblastogenesis via CDK8/19 inhibition in ovaries-intact and ovariectomized rats, and is an orally active drug candidate for bone diseases such as osteoporosis in monotherapy and combination therapy.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Humanos , Ratos , Feminino , Animais , Osteogênese , Densidade Óssea , Ratos Sprague-Dawley , Microtomografia por Raio-X , Osteoporose/tratamento farmacológico , Ovariectomia , Minerais/farmacologia , Quinase 8 Dependente de Ciclina
3.
Sci Rep ; 14(1): 6771, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514763

RESUMO

Rapid metabolic responses to pathogens are essential for plant survival and depend on numerous transcription factors. Mediator is the major transcriptional co-regulator for integration and transmission of signals from transcriptional regulators to RNA polymerase II. Using four Arabidopsis Mediator mutants, med16, med18, med25 and cdk8, we studied how differences in regulation of their transcript and metabolite levels correlate to their responses to Pseudomonas syringae infection. We found that med16 and cdk8 were susceptible, while med25 showed increased resistance. Glucosinolate, phytoalexin and carbohydrate levels were reduced already before infection in med16 and cdk8, but increased in med25, which also displayed increased benzenoids levels. Early after infection, wild type plants showed reduced glucosinolate and nucleoside levels, but increases in amino acids, benzenoids, oxylipins and the phytoalexin camalexin. The Mediator mutants showed altered levels of these metabolites and in regulation of genes encoding key enzymes for their metabolism. At later stage, mutants displayed defective levels of specific amino acids, carbohydrates, lipids and jasmonates which correlated to their infection response phenotypes. Our results reveal that MED16, MED25 and CDK8 are required for a proper, coordinated transcriptional response of genes which encode enzymes involved in important metabolic pathways for Arabidopsis responses to Pseudomonas syringae infections.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Pseudomonas syringae , Fitoalexinas , Glucosinolatos/metabolismo , Plantas/metabolismo , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Quinase 8 Dependente de Ciclina/genética
4.
Arch Toxicol ; 98(5): 1399-1413, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460002

RESUMO

Pulmonary fibrosis involves destruction of the lung parenchyma and extracellular matrix deposition. Effective treatments for pulmonary fibrosis are lacking and its pathogenesis is still unclear. Studies have found that epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AECs) plays an important role in progression of pulmonary fibrosis. Thus, an in-depth exploration of its mechanism might identify new therapeutic targets. In this study, we revealed that a novel circular RNA, MKLN1 (circMKLN1), was significantly elevated in two pulmonary fibrosis models (intraperitoneally with PQ, 50 mg/kg for 7 days, and intratracheally with BLM, 5 mg/kg for 28 days). Additionally, circMKLN1 was positively correlated with the severity of pulmonary fibrosis. Inhibition of circMKLN1 expression significantly reduced collagen deposition and inhibited EMT in AECs. EMT was aggravated after circMKLN1 overexpression in AECs. MiR-26a-5p/miR-26b-5p (miR-26a/b), the targets of circMKLN1, were confirmed by luciferase reporter assays. CircMKLN1 inhibition elevated miR-26a/b expression. Significantly decreased expression of CDK8 (one of the miR-26a/b targets) was observed after inhibition of circMKLN1. EMT was exacerbated again, and CDK8 expression was significantly increased after circMKLN1 inhibition and cotransfection of miR-26a/b inhibitors in AECs. Our research indicated that circMKLN1 promoted CDK8 expression through sponge adsorption of miR-26a/b, which regulates EMT and pulmonary fibrosis. This study provides a theoretical basis for finding new targets or biomarkers in pulmonary fibrosis.


Assuntos
MicroRNAs , Fibrose Pulmonar , Humanos , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Células Epiteliais Alveolares , Transição Epitelial-Mesenquimal/genética , Quinase 8 Dependente de Ciclina/metabolismo , Moléculas de Adesão Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
5.
Exp Mol Med ; 56(2): 461-477, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409448

RESUMO

The P53-destabilizing TBC1D15-NOTCH protein interaction promotes self-renewal of tumor-initiating stem-like cells (TICs); however, the mechanisms governing the regulation of this pathway have not been fully elucidated. Here, we show that TBC1D15 stabilizes NOTCH and c-JUN through blockade of E3 ligase and CDK8 recruitment to phosphodegron sequences. Chromatin immunoprecipitation (ChIP-seq) analysis was performed to determine whether TBC1D15-dependent NOTCH1 binding occurs in TICs or non-TICs. The TIC population was isolated to evaluate TBC1D15-dependent NOTCH1 stabilization mechanisms. The tumor incidence in hepatocyte-specific triple knockout (Alb::CreERT2;Tbc1d15Flox/Flox;Notch1Flox/Flox;Notch2Flox/Flox;HCV-NS5A) Transgenic (Tg) mice and wild-type mice was compared after being fed an alcohol-containing Western diet (WD) for 12 months. The NOTCH1-TBC1D15-FIS1 interaction resulted in recruitment of mitochondria to the perinuclear region. TBC1D15 bound to full-length NUMB and to NUMB isoform 5, which lacks three Ser phosphorylation sites, and relocalized NUMB5 to mitochondria. TBC1D15 binding to NOTCH1 blocked CDK8- and CDK19-mediated phosphorylation of the NOTCH1 PEST phosphodegron to block FBW7 recruitment to Thr-2512 of NOTCH1. ChIP-seq analysis revealed that TBC1D15 and NOTCH1 regulated the expression of genes involved in mitochondrial metabolism-related pathways required for the maintenance of TICs. TBC1D15 inhibited CDK8-mediated phosphorylation to stabilize NOTCH1 and protect it from degradation The NUMB-binding oncoprotein TBC1D15 rescued NOTCH1 from NUMB-mediated ubiquitin-dependent degradation and recruited NOTCH1 to the mitochondrial outer membrane for the generation and expansion of liver TICs. A NOTCH-TBC1D15 inhibitor was found to inhibit NOTCH-dependent pathways and exhibited potent therapeutic effects in PDX mouse models. This unique targeting of the NOTCH-TBC1D15 interaction not only normalized the perinuclear localization of mitochondria but also promoted potent cytotoxic effects against TICs to eradicate patient-derived xenografts through NOTCH-dependent pathways.


Assuntos
Mitocôndrias , Ubiquitina-Proteína Ligases , Humanos , Animais , Camundongos , Ubiquitina-Proteína Ligases/genética , Membranas Mitocondriais , Fosforilação , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Proteínas de Membrana/genética , Proteínas Mitocondriais , Quinase 8 Dependente de Ciclina , Proteínas Ativadoras de GTPase , Quinases Ciclina-Dependentes
6.
J Enzyme Inhib Med Chem ; 39(1): 2305852, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38258519

RESUMO

It has been reported that CDK8 plays a key role in acute myeloid leukaemia. Here, a total of 40 compounds were rational designed and synthesised based on the previous SAR. Among them, compound 12 (3-(3-(furan-3-yl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide) showed the most potent inhibiting activity against CDK8 with an IC50 value of 39.2 ± 6.3 nM and anti AML cell proliferation activity (molm-13 GC50 = 0.02 ± 0.01 µM, MV4-11 GC50 = 0.03 ± 0.01 µM). Mechanistic studies revealed that this compound 12 could inhibit the phosphorylation of STAT-1 and STAT-5. Importantly, compound 12 showed relative good bioavailability (F = 38.80%) and low toxicity in vivo. This study has great significance for the discovery of more efficient CDK8 inhibitors and the development of drugs for treating AML in the future.


Assuntos
Leucemia Mieloide Aguda , Humanos , Disponibilidade Biológica , Leucemia Mieloide Aguda/tratamento farmacológico , Fosforilação , Quinase 8 Dependente de Ciclina
7.
Am J Med Genet A ; 194(5): e63537, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38193604

RESUMO

BACKGROUND: Cyclin-dependent kinase 8 (CDK8) is part of a regulatory kinase module that regulates the activity of the Mediator complex. The Mediator, a large conformationally flexible protein complex, goes on to regulate RNA polymerase II activity, consequently affecting transcriptional regulation. Thus, inactivating mutations of the genes within the kinase module cause aberrant transcriptional regulation and disease, namely, CDK8-related intellectual developmental disorder with hypotonia and behavioral abnormalities (IDDHBA). CASE PRESENTATION: We describe, for the first time, a likely pathogenic heterozygous CDK8 variant c.599G>A, p.(Arg200Gln) inherited from the biological mother. The clinical presentation of the child and mother is within the described clinical spectrum for IDDHBA; however, undocumented progressive contractures of the hips and knees as well as scoliosis were also observed in the child. This phenotype was not found in the mother, highlighting a heterogenous presentation for the same variant within the same family. Furthermore, the described clinical presentation may further support the notion of a module- or Mediator-related syndrome with varying clinical presentation. CONCLUSION: This case report documents the first inherited case of IDDHBA and expands the phenotypic spectrum for CDK8-related disease to include undocumented progressive contractures of the hips and knees as well as scoliosis, which may support the notion of a module- or Mediator-related syndrome with varying clinical presentation.


Assuntos
Contratura , Escoliose , Criança , Humanos , Quinase 8 Dependente de Ciclina/genética , Complexo Mediador/genética , Mutação , Contratura/diagnóstico , Contratura/genética
8.
EMBO J ; 43(3): 437-461, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228917

RESUMO

Plants are often exposed to recurring adverse environmental conditions in the wild. Acclimation to high temperatures entails transcriptional responses, which prime plants to better withstand subsequent stress events. Heat stress (HS)-induced transcriptional memory results in more efficient re-induction of transcription upon recurrence of heat stress. Here, we identified CDK8 and MED12, two subunits of the kinase module of the transcription co-regulator complex, Mediator, as promoters of heat stress memory and associated histone modifications in Arabidopsis. CDK8 is recruited to heat-stress memory genes by HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2). Like HSFA2, CDK8 is largely dispensable for the initial gene induction upon HS, and its function in transcriptional memory is thus independent of primary gene activation. In addition to the promoter and transcriptional start region of target genes, CDK8 also binds their 3'-region, where it may promote elongation, termination, or rapid re-initiation of RNA polymerase II (Pol II) complexes during transcriptional memory bursts. Our work presents a complex role for the Mediator kinase module during transcriptional memory in multicellular eukaryotes, through interactions with transcription factors, chromatin modifications, and promotion of Pol II efficiency.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta ao Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Ativação Transcricional , Nucleotidiltransferases/metabolismo , Complexo Mediador/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo
9.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446017

RESUMO

MicroRNAs (miRNAs) play a crucial role in maintaining the balance between the rapid growth and suppression of tumorigenesis during antler regeneration. This study investigated the role of a novel miRNA, PC-3p-2869 (miR-PC-2869), in antler growth and its therapeutic potential in human osteosarcoma and chondrosarcoma. Stem-loop RT-qPCR showed that miR-PC-2869 was expressed extensively in diverse layers of antler tissues. Overexpression of miR-PC-2869 suppressed the proliferation and migration of antler cartilage cells. Similarly, heterologous expression of miR-PC-2869 reduced the proliferation, colony formation, and migration of osteosarcoma cell line MG63 and U2OS and chondrosarcoma cell line SW1353. Moreover, 18 functional target genes of miR-PC-2869 in humans were identified based on the screening of the reporter library. Among them, 15 target genes, including CDK8, EEF1A1, and NTN1, possess conserved miR-PC-2869-binding sites between humans and red deer (Cervus elaphus). In line with this, miR-PC-2869 overexpression decreased the expression levels of CDK8, EEF1A1, and NTN1 in MG63, SW1353, and antler cartilage cells. As expected, the knockdown of CDK8, EEF1A1, or NTN1 inhibited the proliferation and migration of MG63, SW1353, and antler cartilage cells, demonstrating similar suppressive effects as miR-PC-2869 overexpression. Furthermore, we observed that CDK8, EEF1A1, and NTN1 mediated the regulation of c-myc and cyclin D1 by miR-PC-2869 in MG63, SW1353, and antler cartilage cells. Overall, our work uncovered the cellular functions and underlying molecular mechanism of antler-derived miR-PC-2869, highlighting its potential as a therapeutic candidate for bone cancer.


Assuntos
Chifres de Veado , Neoplasias Ósseas , Condrossarcoma , Cervos , MicroRNAs , Osteossarcoma , Humanos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Chifres de Veado/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Movimento Celular/genética , Cervos/genética , Osteossarcoma/genética , Osteossarcoma/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Condrossarcoma/genética , Regulação Neoplásica da Expressão Gênica , Fator 1 de Elongação de Peptídeos/genética , Quinase 8 Dependente de Ciclina/genética
10.
Life Sci ; 329: 121986, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37516429

RESUMO

Neurological diseases, including traumatic brain injuries, stroke (haemorrhagic and ischemic), and inherent neurodegenerative diseases cause acquired disability in humans, representing a leading cause of death worldwide. The Mediator complex (MED) is a large, evolutionarily conserved multiprotein that facilities the interaction between transcription factors and RNA Polymerase II in eukaryotes. Some MED subunits have been found altered in the brain, although their specific functions in neurodegenerative diseases are not fully understood. Mutations in MED subunits were associated with a wide range of genetic diseases for MED12, MED13, MED13L, MED20, MED23, MED25, and CDK8 genes. In addition, MED12 and MED23 were deregulated in the Alzheimer's Disease. Interestingly, most of the genomic mutations have been found in the subunits of the kinase module. To date, there is only one evidence on MED1 involvement in post-stroke cognitive deficits. Although the underlying neurodegenerative disorders may be different, we are confident that the signal cascades of the biological-cognitive mechanisms of brain adaptation, which begin after brain deterioration, may also differ. Here, we analysed relevant studies in English published up to June 2023. They were identified through a search of electronic databases including PubMed, Medline, EMBASE and Scopus, including search terms such as "Mediator complex", "neurological disease", "brains". Thematic content analysis was conducted to collect and summarize all studies demonstrating MED alteration to understand the role of this central transcriptional regulatory complex in the brain. Improved and deeper knowledge of the regulatory mechanisms in neurological diseases can increase the ability of physicians to predict onset and progression, thereby improving diagnostic care and providing appropriate treatment decisions.


Assuntos
Quinase 8 Dependente de Ciclina , Fatores de Transcrição , Humanos , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo , Fatores de Transcrição/metabolismo , Mutação , Complexo Mediador/genética
11.
Cell Rep ; 42(6): 112566, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37235474

RESUMO

Fibroblasts can be chemically induced to pluripotent stem cells (CiPSCs) through an extraembryonic endoderm (XEN)-like state or directly converted into other differentiated cell lineages. However, the mechanisms underlying chemically induced cell-fate reprogramming remain unclear. Here, a transcriptome-based screen of biologically active compounds uncovered that CDK8 inhibition was essential to enable chemically induced reprogramming from fibroblasts into XEN-like cells, then CiPSCs. RNA-sequencing analysis showed that CDK8 inhibition downregulated proinflammatory pathways that suppress chemical reprogramming and facilitated the induction of a multi-lineage priming state, indicating the establishment of plasticity in fibroblasts. CDK8 inhibition also resulted in a chromatin accessibility profile like that under initial chemical reprogramming. Moreover, CDK8 inhibition greatly promoted reprogramming of mouse fibroblasts into hepatocyte-like cells and induction of human fibroblasts into adipocytes. These collective findings thus highlight CDK8 as a general molecular barrier in multiple cell reprogramming processes, and as a common target for inducing plasticity and cell fate conversion.


Assuntos
Quinase 8 Dependente de Ciclina , Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Humanos , Camundongos , Diferenciação Celular , Reprogramação Celular/genética , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Transcriptoma/genética
12.
Biomed Pharmacother ; 162: 114667, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37037092

RESUMO

Prostate cancer is a prevalent malignancy among men globally, and androgen deprivation therapy is the conventional first-line treatment for metastatic prostate cancer. While androgen deprivation therapy is efficacious in castration-sensitive prostate cancer, it remains less effective in castration-resistant cases. Transcriptional dysregulation is a well-established hallmark of cancer, and targeting proteins involved in transcriptional regulation, such as cyclin-dependent kinase 8 (CDK8), has become an attractive therapeutic strategy. CDK8, a nuclear serine-threonine kinase, is a key component of the mediator complex and plays a critical role in transcriptional regulation. Recent studies have highlighted the promising role of CDK8 as a target in the treatment of metastatic prostate cancer. Our study assessed the efficacy of a novel CDK8 inhibitor, E966-0530-45418, which exhibited potent CDK8 inhibition (IC50 of 129 nM) and high CDK8 selectivity. Treatment with E966-0530-45418 significantly inhibited prostate cancer cell migration and epithelial-to-mesenchymal transition (EMT) at both the RNA and protein levels. Further mechanistic analysis indicated that E966-0530-45418 suppresses prostate cancer metastasis by decreasing CDK8 activity and inhibiting TGF-ß1-mediated Smad3/RNA polymerase II linker phosphorylation and Akt/GSK3ß/ß-catenin signaling. The results in animal model also showed that E966-0530-45418 exhibited anti-metastatic properties in vivo. Our study demonstrated that E966-0530-45418 has great therapeutic potential in the treatment of metastatic prostate cancer.


Assuntos
Quinase 8 Dependente de Ciclina , Neoplasias da Próstata , Animais , Humanos , Masculino , Antagonistas de Androgênios , Androgênios , Linhagem Celular Tumoral , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Transdução de Sinais , Metástase Neoplásica
13.
J Med Chem ; 66(8): 5439-5452, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37029334

RESUMO

Cyclin-dependent kinase 8 (CDK8), as a kinase subunit of the Mediator complex, is involved in the regulation of RNA polymerase II-mediated transcription, thereby modulating multiple signaling pathways and multiple transcription factors involved in oncogenic control. CDK8 deregulation has been implicated in human diseases, particularly in acute myeloid leukemia (AML) and advanced solid tumors, where it has been reported as a putative oncogene. Here, we report the successful optimization of an azaindole series of CDK8 inhibitors that were identified and further progressed through a structure-based generative chemistry approach. In several optimization cycles, we improved in vitro microsomal stability, kinase selectivity, and in vivo pharmacokinetic profile cross-species, leading to the discovery of compound 23, which demonstrated robust tumor growth inhibition in multiple in vivo efficacy models after oral administration.


Assuntos
Quinase 8 Dependente de Ciclina , Neoplasias , Humanos , Neoplasias/genética , Complexo Mediador/metabolismo , Oncogenes , Inibidores de Proteínas Quinases/farmacologia
14.
J Med Chem ; 66(7): 4932-4951, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36930701

RESUMO

The CDK8-cyclin C complex is an important anti-tumor target, but unlike CDK8, cyclin C remains undruggable. Modulators regulating cyclin C activity directly are still under development. Here, a series of hydrophobic tagging-based degraders of the CDK8-cyclin C complex were designed, synthesized, and evaluated to identify the first dual degrader, LL-K8-22, which induced selective and synchronous degradation of CDK8 and cyclin C. Proteomic and immunoblot studies exhibited that LL-K8-22 significantly degraded CDK8 without reducing CDK19 and did not degrade other cyclin proteins except cyclin C. Moreover, LL-K8-22 showed enhanced anti-proliferative effects over its parental molecule, BI-1347, with potency increased by 5-fold in MDA-MB-468 cells. LL-K8-22 exhibited more pronounced effects on CDK8-cyclin C downstream signaling than BI-1347, suppressing STAT1 phosphorylation more persistently. RNA-sequencing analysis revealed that LL-K8-22 inhibited E2F- and MYC-driven carcinogenic transcriptional programs. Overall, LL-K8-22 is the first-in-class degrader of cyclin C and would be useful for studying the unknown functions of cyclin C.


Assuntos
Ciclina C , Quinases Ciclina-Dependentes , Ciclina C/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Fosforilação , Proteômica , Transdução de Sinais
15.
Eur J Med Chem ; 251: 115214, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36889252

RESUMO

CDK8 plays a key role in acute myeloid leukemia, colorectal cancer and other cancers. Here, a total of 54 compounds were designed and synthesized. Among them, the most potent one compound 43 (3-(1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide), a novel CDK8 Ⅰ inhibitor, showed strong inhibitory activity against CDK8 (IC50 = 51.9 nM), good kinase selectivity, good anti AML cell proliferation activity (molm-13 GC50 = 1.57 ± 0.59 µM) and low toxicity in vivo (acute toxicity: 2000 mg/kg). Further mechanistic studies revealed that this compound could target CDK8 and then phosphorylate STAT-1 and STAT-5 thereby inhibiting of AML cell proliferation. In addition, compound 43 showed relatively good bioavailability (F = 28.00%) and could inhibit the growth of AML tumors in a dose-dependent manner in vivo. This study facilitates the further development of more potent CDK8 inhibitors for the treatment of the AML.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Proliferação de Células , Pirazóis/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Quinase 8 Dependente de Ciclina
16.
J Transl Med ; 21(1): 77, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737782

RESUMO

BACKGROUND: Chronic inflammation is a well-known risk factor for the development of gastric cancer (GC). Nevertheless, the molecular mechanisms underlying inflammation-related GC progression are incompletely defined. METHODS: Bioinformatic analysis was performed based on data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), and the expression of miR-26b-5p in GC cells and tissues was validated by quantitative real-time PCR (qRT-PCR). Cell proliferation was examined through Cell Counting Kit-8 (CCK8), 5-Ethynyl-2'-deoxyuridine (EdU), colony formation, flow cytometry, and tumor xenografts. Correlation between miR-26b-5p and Cyclin dependent kinase 8 (CDK8) or Phosphodiesterase 4B (PDE4B) was analyzed by dual-luciferase reporter assays, qRT-PCR, and Western blot. The effect of miR-26b-5p on the Signal transducer and activator of transcription 3 (STAT3) pathway was investigated using Western blot, immunofluorescence (IF), and immunohistochemistry (IHC). The impact of STAT3 on miR-26b-5p was determined by dual-luciferase reporter assays and qRT-PCR. RESULTS: The expression of miR-26b-5p was significantly downregulated in Helicobacter Pylori (H. pylori)-infected GC cells. The decreased expression of miR-26b-5p was also detected in GC cells and tissues compared to normal gastric epithelium cells (GES1) and normal adjacent gastric tissues. The low expression of miR-26b-5p promoted GC proliferation in vitro and in vivo and was related to the poor outcome of GC patients. In terms of mechanism, miR-26b-5p directly targeted PDE4B and CDK8, resulting in decreased phosphorylation and nuclear translocation of STAT3, which was associated with the regulation of GC proliferation by miR-26b-5p. Notably, miR-26b-5p was transcriptionally suppressed by STAT3, thus forming the miR-26b-5p-PDE4B/CDK8-STAT3 positive feedback loop. CONCLUSION: The newly identified miR-26b-5p-PDE4B/CDK8-STAT3 feedback loop plays an important role in inflammation-related GC progression and may serve as a promising therapeutic target for GC.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo , Retroalimentação , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/patologia , Animais
17.
Bioorg Chem ; 133: 106402, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36791618

RESUMO

As an ideal anti-inflammatory target, cyclin-dependent kinase 8 (CDK8) has gradually attracted the attention of researchers. CDK8 inhibition up-regulates Interleukin-10 (IL-10) expression by enhancing the transcriptional activity of activator protein-1 (AP-1), and augmenting IL-10 abundance is a viable strategy for the treatment of inflammatory bowel disease (IBD). In this research, through structure-based drug design and dominant fragment hybridization, a series of poly-substituted pyridine derivatives were designed and synthesized as CDK8 inhibitors. Ultimately, compound CR16 was identified as the best one, which exhibited good inhibitory activity against CDK8 (IC50 = 74.4 nM). In vitro and in vivo studies indicated that CR16 could enhance the transcriptional activity of AP-1, augment the abundance of IL-10, and affect CDK8-related signaling pathways including TLR7/NF-κB/MAPK and IL-10-JAK1-STAT3 pathways. In addition, CR16 showed potent therapeutic effect in an animal model of IBD.


Assuntos
Interleucina-10 , Inibidores de Proteínas Quinases , Animais , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Interleucina-10/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Transdução de Sinais , Fator de Transcrição AP-1
18.
New Phytol ; 238(2): 724-736, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36683527

RESUMO

CYCLIN-DEPENDENT KINASE 8 (CDK8), a component of the kinase module of the Mediator complex in Arabidopsis, is involved in many processes, including flowering, plant defense, drought, and energy stress responses. Here, we investigated cdk8 mutants and CDK8-overexpressing lines to evaluate whether CDK8 also plays a role in regulating lipid synthesis, an energy-demanding anabolism. Quantitative lipid analysis demonstrated significant reductions in lipid synthesis rates and lipid accumulation in developing siliques and seedlings of cdk8, and conversely, elevated lipid contents in wild-type seed overexpressing CDK8. Transactivation assays show that CDK8 is necessary for maximal transactivation of the master seed oil activator WRINKLED1 (WRI1) by the seed maturation transcription factor ABSCISIC ACID INSENSITIVE3, supporting a direct regulatory role of CDK8 in oil synthesis. Thermophoretic studies show GEMINIVIRUS REP INTERACTING KINASE1, an activating kinase of KIN10 (a catalytic subunit of SUCROSE NON-FERMENTING1-RELATED KINASE1), physically interacts with CDK8, resulting in its phosphorylation and degradation in the presence of KIN10. This work defines a mechanism whereby, once activated, KIN10 downregulates WRI1 expression and suppresses lipid synthesis via promoting the degradation of CDK8. The KIN10-CDK8-dependent regulation of lipid synthesis described herein is additional to our previously reported KIN10-dependent phosphorylation and degradation of WRI1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Lipídeos
19.
Stem Cell Res Ther ; 14(1): 1, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36600289

RESUMO

BACKGROUND: Transplantation of differentiated cells from human-induced pluripotent stem cells (hiPSCs) holds great promise for clinical treatments. Eliminating the risk factor of malignant cell transformation is essential for ensuring the safety of such cells. This study was aimed at assessing and mitigating mutagenicity that may arise during the cell culture process in the protocol of pancreatic islet cell (iPIC) differentiation from hiPSCs. METHODS: We evaluated the mutagenicity of differentiation factors used for hiPSC-derived pancreatic islet-like cells (iPICs). We employed Ames mutagenicity assay, flow cytometry analysis, immunostaining, time-resolved fluorescence resonance energy transfer-based (TR-FRET) cell-free dose-response assays, single-cell RNA-sequencing and in vivo efficacy study. RESULTS: We observed a mutagenic effect of activin receptor-like kinase 5 inhibitor II (ALK5iII). ALK5iII is a widely used ß-cell inducer but no other tested ALK5 inhibitors induced ß-cells. We obtained kinase inhibition profiles and found that only ALK5iII inhibited cyclin-dependent kinases 8 and 19 (CDK8/19) among all ALK5 inhibitors tested. Consistently, CDK8/19 inhibitors efficiently induced ß-cells in the absence of ALK5iII. A combination treatment with non-mutagenic ALK5 inhibitor SB431542 and CDK8/19 inhibitor senexin B afforded generation of iPICs with in vitro cellular composition and in vivo efficacy comparable to those observed with ALK5iII. CONCLUSION: Our findings suggest a new risk mitigation approach for cell therapy and advance our understanding of the ß-cell differentiation mechanism.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Diferenciação Celular , Técnicas de Cultura de Células/métodos , Quinase 8 Dependente de Ciclina
20.
Biomed Pharmacother ; 159: 114258, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36708700

RESUMO

Cyclin-dependent protein kinase 8 (CDK8) plays important roles in regulating fibrotic growth factors and inflammatory signaling pathways. Long-term chronic inflammation of the lungs can lead to idiopathic pulmonary fibrosis (IPF). Abnormal alveolar epithelial regeneration leads to the release of various fibrotic growth factors and the activation of inflammatory cells. CDK8 regulates profibrotic cytokines broadly implicated in the pathogenesis of fibrosis. Therefore, inhibition of CDK8 is considered a promising strategy for treating IPF. Here, CDK8 inhibitors were designed and optimized using a fragment-based drug design strategy. Testing results revealed that 71% of the synthesized compounds inhibited CDK8 activity better than the original compound E966-0530. Of these compounds, compound 4k exhibited the strongest CDK8 enzyme-inhibiting activity (IC50 =129 nM). Notably, it displayed a 13-fold increase in potency when compared to E966-0530. Experiments on toxicity and inhibition of epithelial-mesenchymal transition (EMT) protein expressions showed that compound 4k can inhibit EMT protein expressions, but with no significant cytotoxicity for alveolar epithelial cells. Compound 4k showed a potent inhibitory effect in cell migration assays. Furthermore, compound 4k significantly inhibited the phosphorylation of p-Smad3 and RNA Pol II, which are critical mediators in the fibrotic response signaling pathway. Compound 4k remarkably reduced TGF-ß1-induced oxidative stress. The above results reveal optimized CDK8 inhibitors with potential use for IPF therapeutic treatment.


Assuntos
Quinases Ciclina-Dependentes , Fibrose Pulmonar Idiopática , Humanos , Quinases Ciclina-Dependentes/metabolismo , Quinase 8 Dependente de Ciclina , Indóis/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Fosforilação , Transdução de Sinais , Fibrose , Fibrose Pulmonar Idiopática/tratamento farmacológico , Transição Epitelial-Mesenquimal , Inibidores de Proteínas Quinases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...